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Graphs Theory

22

 Mathematical model where objects (Vertex) communicate together (Edges), forming a network : 𝐺 = (𝑉, 𝐸)

 Used everywhere

[http://www.bretagne.bzh] [https://www.officetimeline.com]



Fracture Network
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[https://enigma-itn.eu]



Discrete Fracture Network Framework
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Data acquisition

[provided by SKB]

+ statistical analysis
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Geometric model (DFN) 

+ associated properties

Predictions

 Computationally expensive

 Need for several realisations

[dfnWorks]



Discrete Fracture Network
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Graph Fracture Network
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Graph Fracture Network

77



Graph Fracture Network
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𝒌 = 𝟒
𝒌 = 𝟏



Graph Fracture Network
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Node attributes

𝒍, 𝑲, 𝒂 …Edge attributes

Size, type …



Graph Fracture Network
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Topology
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 Two systems can contain the same geometrical

elements (orientation, size…), with different

topologies

 Topology is related to connectivity and can have important mechanical and hydrological consequences

 Quantified by different indicators

 Compare those indicators for data and model, to validate the model

[Sanderson, Nixon, 2015]



Topology – Compare Data to Models

1212

 Degree correlations

𝐶 𝑘1, 𝑘2 =
𝑃 𝑘1, 𝑘2
𝑃𝑅(𝑘1, 𝑘2)

Probability for a fracture of degree 𝑘1to be linked

with a fracture of degree 𝑘2

[Andresen et al., 2013]

 Cumulative degree distribution

[Andresen et al., 2013]

Fraction of nodes with degree higher than 𝑘



Topology – Compare Data to Models
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 Efficiency

𝐸 =
1

𝑁(𝑁 − 1)
෍

𝑖,𝑗 ∈𝑁,𝑖≠𝑗

1

𝑑𝑖𝑗
Measures how well the different parts of the network are connected

 Community structure

Identify parts of the network which are highly 

interconnected but have relatively few connections to 

other parts of the network [Hope et al., 2015]

 Clustering

𝐶 =
1

𝑁
෍

𝑖=1

𝑁
2𝐸𝑁𝑁,𝑖

𝑘𝑖(𝑘𝑖 − 1)

Quantify how well the network is connected

on a neighbor-to neighbor scale



Topology – Compare Data to Models
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 Connectivity : 𝐶𝐿 =
2 𝑁𝑌+𝑁𝑋

𝑁𝐿
(number of connections per line)

Percolation threshold :

- 𝐶𝐿 < 2 : no possible spanning cluster

- Random line of fixed length : 𝐶𝐿 = 3.57 [Balberg et al, 1984]

[Sanderson, Nixon, 2015]



Assessing DFN hydrological properties with Graphs
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• Numerical flow and transport simulations in DFN (ex : with H2OLAB).

Hydrological caracterisation of the fracture network : 

- Equivalent permeability 𝐾𝑒𝑞
- Flow repartition (channeling indicator)

- Breakthrough curves

 Computational cost for meshing, flow and transport computation.

 Several realisations of one statistical model.

• Fracture network is channeled, some structures are more important than others (network backbone).

How can we simplify the fracture network using graphs ?



Assessing DFN hydrological properties with Graphs
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 Tool for network reduction

Identification of important structures 

(topological shortest paths, physical

shortest paths)

 First arrival times

Pros : Reduced computational times

Cons : Loss of information (late arrival times)

Distribution of first arrival times in 

different subnetworks.
Time required for meshing, flow 

and transport computation

Subgraph corresponding to the 

network 10 shortest paths
Reduced NetworkFull Network

[Hyman et al, 2017]



Assessing DFN hydrological properties with Graphs

1717

 Simulation tool for fast flow and transport computation

No meshing.

Computation is directly made on nodes and edges.

𝑃𝑖 𝑃𝑗

𝑪𝒊𝒋

𝑪𝒊𝒋 : flow conductance between node 𝑖 and node 𝑗
= graph edge attribute

- Mass conservation law of mass flow in node 𝑖 : ෍
𝑗=1

𝑁

𝑄𝑖𝑗 = 0

𝑄𝑖𝑗 = 𝑪𝒊𝒋 (𝑃𝑖 − 𝑃𝑗)- Darcy’s law : 

- Boundary conditions

P = 10

P = 0

 Edges flow informations : flow 𝑄𝑖𝑗, velocities 𝑞𝑖𝑗, travel time 𝑡𝑖𝑗.



Assessing DFN hydrological properties with Graphs
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 Simulation tool for fast flow computation

Geometrical information of fracture to 

map equivalent graph.

Breakthrough curves for DFN with 500 

fractures (red) and equivalent graphs (blue).
CPU times for various steps.

 Nodes represent intersections

 The conductance 𝐶𝑖𝑗 is defined on intersections geometrical informations.

 Breakthrough curves and CPU times

[Karra et al., 2017] 

• Particle tracking in graphs



Assessing DFN hydrological properties with Graphs
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 Simulation tool for fast flow computation

• Equivalent permeability calculation 𝐾𝑒𝑞 =
𝑄. 𝐿

𝑆. (𝑃1 − 𝑃2)

𝑃1 𝑃2

𝐿

𝑆 𝑄

𝑉

Importance of :

- Conductance 𝐶𝑖𝑗 definition, directly linked to flow 𝑄 intensity.

𝑙𝑖 𝑙𝑗

- Node and edge choice for graph. 

Nodes : Intersections, fractures, mixed ?

Edges : remove crossing paths ?



Fracture Network sealing issues
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First year of PhD :  «Sealing processes in Fracture Networks, models and hydrological consequences.

 70% to 90% of fractures observed in SKB boreholes are sealed.

 Statistical graph-based approach.

• Tool for easily removing links with a given probability.

• Impact of the DFN topology to its ‘robustness’ to clogging, with graph indicators.

Network robustness : ability of a network to continue performing in case of failures (Ellens et al., 2013).

Drill cores with sealed fractures (SKB). 

- Clustering, Efficiency, Communities

- Betweenness : 𝑏𝑥 = σ𝑖=1
𝑛 σ𝑗=𝑖+1

𝑛 𝑛𝑖𝑗 𝑥

𝑛𝑖𝑗

Determines nodes (or edges) that occupy central positions in the 

Network



Conclusion
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 Discrete Fracture Network (DFN) modeling : 

- essential

- complex

- computationally expensive

 Graph : 

- simple mathematical model

- edges / nodes

- extensively studied

 Graph Fracture Network (GFN) 

- characterize

- generate ?

- simplify

- simulate

Thanks for your attention !


